Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 41(11): 1024-1028, Nov. 2008. ilus
Article in English | LILACS | ID: lil-500367

ABSTRACT

Ciliary neurotrophic factor (CNTF) is a cytokine that plays a neuroprotective role in relation to axotomized motoneurons. We determined the effect of daily subcutaneous doses of CNTF (1.2 µg/g for 5 days; N = 13) or PBS (N = 13) on the levels of mRNA for Bcl-2 and Bax, as well as the expression and inter-association of Bcl-2 and Bax proteins, and the survival of motoneurons in the spinal cord lumbar enlargement of 2-day-old Wistar rats after sciatic nerve transection. Five days after transection, the effects were evaluated on histological and molecular levels using Nissl staining, immunoprecipitation, Western blot analysis, and reverse transcriptase-polymerase chain reaction. The motoneuron survival ratio, defined as the ratio between the number of motoneurons counted on the lesioned side vs those on the unlesioned side, was calculated. This ratio was 0.77 ± 0.02 for CNTF-treated rats vs 0.53 ± 0.02 for the PBS-treated controls (P < 0.001). Treatment with CNTF modified the level of mRNA, with the expression of Bax RNA decreasing 18 percent (with a consequent decrease in the level of Bax protein), while the expression of Bcl-2 RNA was increased 87 percent, although the level of Bcl-2 protein was unchanged. The amount of Bcl-2/Bax heterodimer increased 91 percent over that found in the PBS-treated controls. These data show, for the first time, that the neuroprotective effect of CNTF on neonatal rat axotomized motoneurons is associated with a reduction in free Bax, due to the inhibition of Bax expression, as well as increased Bcl-2/Bax heterodimerization. Thus, the neuroprotective action of the CNTF on axotomized motoneurons can be related to the inhibition of this apoptotic pathway.


Subject(s)
Animals , Rats , Ciliary Neurotrophic Factor/pharmacology , /metabolism , Sciatic Nerve/surgery , Spinal Cord/drug effects , /metabolism , Animals, Newborn , Blotting, Western , Immunoprecipitation , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger/metabolism , Spinal Cord/chemistry , Spinal Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL